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1,3-Bis(4-methoxyphenyl)cyclohexane-1,3-diyl cation radical:
divergent reactivity depending upon electron-transfer conditions
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Abstract—1,3-Bis(4-methoxyphenyl)cyclohexane-1,3-diyl cation radical gives 1,5-bis(4-methoxyphenyl)bicyclo[3.1.0]hexane
through 1,3-bis(4-methoxyphenyl)cyclohexane-1,3-diyl when generated by photoinduced electron transfer, but gives 4,4�-
dimethoxy-m-terphenyl when generated by using one-electron oxidant, demonstrating its divergent reactivity depending upon the
electron-transfer conditions employed. © 2001 Elsevier Science Ltd. All rights reserved.

We previously reported that 1,4-diphenylcyclohexane-
1,4-diyl cation radical (2�+, Scheme 1) generated from
2,5-diphenylhexa-1,5-diene (1) under the 9,10-dicyano-
anthracene (DCA)-sensitized electron-transfer condi-
tions does not undergo cleavage to 2,5-diphenylhexa-
1,5-diene cation radical (1�+), but suffers back electron
transfer (BET) to form 1,4-diphenylcyclohexane-1,4-diyl
(2), through which cleavage takes place to complete the
degenerate Cope rearrangement of 1.1 In contrast, one-
electron oxidation reactions of 1 and 1,4-diphenyl-2,3-
diazabicyclo[2.2.2]oct-2-ene (3) by cerium(IV) ammo-
nium nitrate (CAN) result in the formation of p-ter-
phenyl (4) via 2�+ and 1,4-diphenylcyclohex-1-en-4-yl in
a successive deprotonation–oxidation mechanism.1–3

The observed striking contrast between photoinduced
electron-transfer and one-electron oxidant-catalyzed

reactions prompted us to investigate the generation and
reactivity of 1,3-diarylcyclohexane-1,3-diyl cation radi-
cal. We studied electrontransfer reactions of 1,5-bis(4-

Figure 1. An=4-MeOC6H4.

† Satisfactory elemental microanalyses were obtained for all new
compounds in this report. Selected data for 5, 6, and 8 were as
follows. 5: mp 92–93°C (colorless leaves from EtOH); 1H NMR
(200 MHz, CDCl3) � 1.24–1.50 (m, 3H), 1.79 (m, 1H), 2.05–2.37 (m,
4H), 3.72 (s, 6H), 6.69 (AA�BB�, J=8.8 Hz, 4H), 6.98 (d, J=8.8 Hz,
4H); 13C NMR (50 MHz, CDCl3) � 18.2, 20.5, 35.9 (2C), 38.5 (2C),
55.1 (2C), 113.3 (4C), 129.4 (4C), 134.2 (2C), 157.4 (2C); MS m/z
294 (100, M+), 263 (22), 235 (24), 121 (26). 6: dp 99–100°C
(colorless needles from CH2Cl2–n-hexane); UV (CH2Cl2) �max

(N�N) 350 nm; 1H NMR (200 MHz, CDCl3) � 1.23 (m, 1H), 1.70
(m, 3H), 1.95 (m, 4H), 3.83 (s, 6H), 6.96 (AA�XX�, J=8.6 Hz, 4H),
7.52 (AA�XX�, J=8.6 Hz, 4H); 13C NMR (50 MHz, CDCl3) � 19.9,
29.5 (2C), 47.8, 55.3 (2C), 91.6 (2C), 114.0 (4C), 127.1 (4C), 135.3
(2C), 159.0 (2C); MS m/z 294 (100, M+−N2), 263 (22), 235 (22), 121
(30). 8: dp 150–151°C (colorless needles from EtOH); 1H NMR (200
MHz, CDCl3) � 1.94–2.24 (m, 5H), 2.48 (m, 1H), 2.75 (d, J=11 Hz,
1H), 2.88 (broad d, J=11 Hz, 1H), 3.80 (s, 6H), 6.88 (AA�XX�,
J=9.0 Hz, 4H), 7.35 (AA�XX�, J=9.0 Hz, 4H); 13C NMR (50
MHz, CDCl3) � 19.9, 36.2 (2C), 55.2 (2C), 58.0, 87.2 (2C), 113.8
(4C), 126.8 (4C), 133.0 (2C), 159.2 (2C); MS m/z 326 (100, M+), 294
(62, M+−O2), 293 (77), 177 (82), 135 (100).

Scheme 1.
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methoxyphenyl)bicyclo-[3.1.0]hexane (5, Fig. 1)† and
1,5-bis(4-methoxyphenyl)-6,7-diazabicyclo[3.2.1]oct-6-
ene (6)† under various electron-transfer conditions and
found that it is also the case with the reactivity of
1,3-bis(4-methoxyphenyl)cyclohexane-1,3-diyl cation
radical (7�+).

Diazene 6 was prepared by the BF3·Et2O-catalyzed
reaction4 of 1,5-bis(4-methoxyphenyl)hex-5-en-1-one
tosylhydrazone. Bicyclohexane 5 was obtained quanti-
tatively by pyrolysis, direct irradiation, and benzophe-
none (BP)-sensitized photoreaction of 6. The halfwave
oxidation potentials (Eox

1/2)‡ of 5 (+0.77 V versus SCE
in acetonitrile) and 6 (+1.28 V) are low enough to
quench the excited singlet state of DCA exergonically,
as suggested by the calculated free energy change for
electron transfer,§ �Get=−1.19 and −0.68 eV in acetoni-
trile, respectively. In agreement with the calculation, 5
and 6 quench the fluorescence of DCA efficiently with
rate constants, kq=1.7, 1.6, and 1.1×1010 M−1 s−1 for 5,
and 1.4, 1.1, and 0.84×1010 M−1 s−1 for 6, respectively,
in aerated acetonitrile, dichloromethane, and benzene.
In spite of large kq close to the diffusion control rate,
the DCA-sensitized photoreactions of 5 (�>360 nm)
under nitrogen in acetonitrile, dichloromethane, or ben-
zene result in a quantitative recovery, but 1,5-bis(4-
methoxyphenyl)-6,7-dioxabicyclo[3.2.1]octane (8,
Scheme 2)† is efficiently formed under oxygen in polar
acetonitrile and dichloromethane (Table 1). Similar
irradiation (�>410 nm) of DCA with 6 under nitrogen
affords 5 quantitatively in acetonitrile, dichloro-
methane, and benzene. Deazetation of 6 also occurs
quantitatively under oxygen, giving rise to 5 together

with 8 as a minor product. Of course, prolonged irradi-
ation of 6 gives 8 quantitatively under oxygen.

Interestingly, one-electron oxidation reactions of 5 and
6 by tris(4-bromophenyl)aminium hexachloroanti-
monate (Ar3N�+SbCl6−) give rapidly 4,4�-dimethoxy-m-
terphenyl (9) under nitrogen and even under oxygen. As
shown in Table 1, the cerium(IV) tetra-n-butylammo-
nium nitrate [Ce(n-Bu4N)2(NO2)6, CBN]7-catalyzed
reaction of 5 and 6 under nitrogen forms 9 similarly but
slowly. Under oxygen, CBN-catalyzed reaction gives 9
together with 8 as a minor product.

Scheme 3 shows plausible mechanistic connections
among all reactions. The DCA-sensitized photoreac-
tions of 5 and 6 initially form cation radicals 5�+ and
6�+, which undergo cleavage and deazetation, respec-
tively, to form 7�+. Then, a facile BET from DCA�− to
7�+ succeeds to form diyl 7 under nitrogen and oxygen.
The inertness of 5 under nitrogen is likely due to the
degeneracy of 5. The degeneracy of 5 and formation of
5 from 6 are completed by cyclization of 7. The fact
that pyrolysis, direct irradiation, or BP-sensitized pho-
toreaction of 6 forms 5 supplements the intervention of
7 in the DCA-sensitized photoreactions of 5 and 6.
Under oxygen, however, relatively slow oxygenation of
7�+ competes with BET, forming 8 through 10�+.¶ On
the other hand, one-electron oxidant-catalyzed reac-
tions of 5 and 6 similarly form 7�+, but BET to form 7
is energetically unfavorable under these one-electron
oxidation conditions. Thus, cation radical 7�+ formed
from 5 and 6 then gives rise to 9 under nitrogen and a
mixture of 8 and 9 through 11� under oxygen, as shown
in Scheme 3.

Time-resolved absorption spectroscopy upon laser flash
photolysis (LFP)�� and �-ray irradiation** directly
observed cation radicals derived from 5 and 6. Under
N-methylquinolinium tetrafluoroborate (NMQ+BF4

−)–
toluene-cosensitized conditions in dichloromethane,
nanosecond LFP of 5 and 6 exhibit nearly the same
spectra with an intense absorption band with �max at
565 nm together with a weak band at 495 nm, as shown
in Fig. 2.†† These results suggest that 5�+ and 6�+ afford
the same transient species. It is noteworthy that upon

Scheme 2.

¶ The fact that the DCA-sensitized reaction of 5 slowly afforded 8
even in nonpolar benzene (Table 1) suggests that molecular oxygen
capture of 7 may occur concurrently (Scheme 3).

�� Nanosecond absorption spectroscopy upon LFP was carried out
with a pulsed Xe arc lamp (150 W) and a XeCl excimer laser
(Lumonics EX600, �ex=308 nm, 100 mJ) at the Advanced Instru-
mental Laboratory for Graduate Research of Department of
Chemistry, Graduate School of Science, Tohoku University.

** A sample solution (10 mM) was degassed by repeating five freeze
(77 K)–pump (10−3 mmHg)–thaw (ambient temperature) cycles and
sealed at 10−3 mmHg at 77 K. This matrix was irradiated at 77 K
for 8 h with �-ray from a 5.1 TBq 60Co source at the Cobalt 60 �
Ray Irradiation Facility, Tohoku University.

†† Similarly, absorption bands with �max at 549 and 485 nm were
observed by LFP (Continuum Surelite-10 YAG laser, Nd, THG,
�ex=355 nm, 55 mJ) of 5 in acetonitrile under the DCA–biphenyl-
cosensitized conditions.

‡ The values of Eox
1/2 were estimated as Epa (anodic peak potentials)

−0.03 V, which were measured by cyclic voltammetry at a platinum
electrode in dry acetonitrile with 0.1 M Et4N+ClO4

− as a supporting
electrolyte.

§ The values of �Get were estimated by using the Rehm–Weller
equation:5 �Get (eV)=Eox

1/2 (sub)−E red
1/2 (DCA)−E0-0 (DCA)–e2/

�r, where E red
1/2 (DCA)=−0.95 V and E0-0 (DCA)=2.91 eV in

acetonitrile and the coulombic term (e2/�r) is disregarded.6
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Table 1. Electron-transfer reactions of 5 and 6 under various conditions

Conditions 5 6

Conv. (%)Yieldsa (%)Conv. (%)Time (h) Yieldsa (%)Time (h)

8 99 5 8

–545410 0–00.33h�/DCA/CH3CN/N2
b

2 0 – 0 01 100 100 –h�/DCA/CH2Cl2/N2
b

2 0 – 0 01 96 96 –h�/DCA/C6H6/N2
b

h�/DCA/CH3CN/O2
b 0.33 100 91 0 1 43 40 3 0

010010 100 0
2 0100 85 0 1 96 94 2h�/DCA/CH2Cl2/O2

b

0089891h�/DCA/C6H6/O2
b 011112

h�/NMQ+BF4
−–toluene/CH2Cl2/O2

c – 7 7 0 – 28 23 0 0
Ar3N�+SbCl6

− (1 equiv.)/CH3CN/N2 1 100 – 60 1 100 0 – 44
36 – 28 22 34CBN (1 equiv.)/CH3CN/N2 2 – 32

1 100 0 5755 1 100 0 0Ar3N�+SbCl6
− (1 equiv.)/CH3CN/O2

242 33 9 24 2 34 5 5CBN (1 equiv.)/CH3CN/O2

a Yields were determined by 200 MHz 1H NMR analyses.
b A 5 mL solution was irradiated with a 2 kW Xe lamp through a cut-off filter (� >360 nm for 5, >410 nm for 6) at 20°C. [5 or 6]=10 mM.
c A 2 mL solution was irradiated with a XeCl excimer laser (�=308 nm, 110 mJ, 10 Hz, 500 shots). [5 or 6]=10 mM. [NMQ+BF4

−]=1 mM,
[toluene]=2 M.

Scheme 3.

The PM3/UHF calculations indicate that indeed 5�+ has
a local energy minimum, but 7�+ lies 0.9 kcal/mol lower
in energy than 5�+.§§ As shown in Fig. 4,¶¶ 5�+ still

Figure 2. Nanosecond absorption spectra upon LFP of aer-
ated CH2Cl2 solutions of 5 (10 mM, left) and 6 (10 mM,
right) under the NMQ+BF4

− (1 mM)–toluene (2 M)-cosensi-
tized conditions.

Figure 3. Absorption spectra of �-ray irradiated n-BuCl
matrices of 5 (10 mM, left) and 6 (10 mM, right) at 77 (bold
lines) and ca. 100 K (solid lines).

similar pulsed irradiation under NMQ+BF4
−–toluene-

cosensitized conditions under oxygen, 5 and 6 give 8
and 5, respectively, as shown in Table 1. Similar
absorption spectra with two �max are observed for �-ray
irradiated n-BuCl matrices of 5 and 6 at ca. 100 and 77
K, respectively, as shown in Fig. 3. Combining the
spectroscopic results with the exploratory experimental
facts, the observed transient species with two �max is
assigned to 7�+, while a broad band (400–600 nm)
observed in n-BuCl matrices of 5 at 77 K (Fig. 3, left,
a bold line) is probably due to 5�+.‡‡

‡‡ The structurally related 1,3-bis(4-methoxyphenyl)trimethylene
cation radical and cis-1,2-bis(4-methoxyphenyl)cyclopropane cation
radical were reported to exhibit �max at 580 and 490 nm, respec-
tively, in n-BuCl at 77 K.8

§§ The heat of formation, �Hf, of 5�+ and 7�+ were calculated to be
155.26 and 154.32 kcal/mol, respectively, by using the PM3/UHF
with MacGAMESS program9 at Cs symmetry.

¶¶ Structures of 5�+ and 7�+ shown in Fig. 4 were depicted with the
MacMolPlt program.11
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Figure 4. Structures of 5�+ (top) and 7�+ (bottom) optimized
by PM3/UHF.
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maintains the cis-1,2-bis(4-methoxyphenyl)cyclopro-
pane structure with the C1�C3 bond length of 2.26 A� ,
which is longer than that (1.875 A� ) of the parent
cyclopropane cation radical,10 but close to the C1�C3

atom distance (2.52 A� ) of 7�+ possessing a nearly planar
1,3-bis(4-methoxyphenyl)trimethylene structure. The
C1�C3 bond length is, therefore, long enough for 5�+ to
undergo cleavage to 7�+ readily even at low temperature.

In conclusion, it is evident that the electron-transfer
conditions employed significantly alter the reactivity of
1,3-diarylcyclohexane-1,3-diyl cation radical, demon-
strating the importance of a biradical-forming BET in
photoinduced electron-transfer reactions.
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